SIS WoundCare

Journal articles


Illingworth CM, Barker AT. Measurement of electrical currents emerging during the regeneration of amputated finger tips in children. Clin. Phys. Physiol. Meas. 1 87, 1980. Read article >

Barker AT, Jaffe LF, Vanable JW Jr. The glabrous epidermis of cavies contains a powerful battery. Am J Physiol. 1982 Mar;242(3):R358-66. Read article >

LerCinovic A, Bobanovic F, Vodovnik L. Endogenous potentials in two different models of human skin injuries. Bioelectrochemistry and Bioenergetics, 30 (1993) 221-227. Read article >

Nishimura KY, Isseroff RR, Nuccitelli R. Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J Cell Sci. 1996 Jan;109 (Pt 1):199-207. Read article >

Spence DW, Pomeranz B. Surgical wound healing monitored repeatedly in vivo using electrical resistance of the epidermis. Physiol Meas. 1996 May;17(2):57-69. Read article >

Kloth LC, McCulloch JM. Promotion of wound healing with electrical stimulation. Adv Wound Care. 1996 Sep-Oct;9(5):42-5. Read article >

Karba R, Dejan Šemrov, Vodovnik L, Benko H, Sˇavrin R. DC electrical stimulation for chronic wound healing enhancement Part 1. Clinical study and determination of electrical field distribution in the numerical wound model. Bioelectrochemistry and Bioenergetics, Volume 43, Issue 2, August 1997, Pages 265-270. Read article >

Reger SI, Hyodo A, Negami S, Kambic HE, Sahgal V. Experimental wound healing with electrical stimulation. Artif Organs. 1999 May;23(5):460-2. Read article >

McCaig CD, Rajnicek AM, Song B, Zhao M. Controlling cell behavior electrically: current views and future potential. Physiol Rev. 2005 Jul;85(3):943-78. Read article >

Talebi G, Torkaman G, Firoozabadi M, Shariat S. Effect of anodal and cathodal microamperage direct current electrical stimulation on injury potential and wound size in guinea pigs. J Rehabil Res Dev. 2008;45(1):153-9. Read article >

Nuccitelli R, Nuccitelli P, Ramlatchan S, Sanger R, Smith PJS. Imaging the electric field associated with mouse and human skin wounds. Wound Repair and Regeneration. 2008;16(3):432-441. Read article >

Balakatounis KC, Angoules AG. Low-intensity Electrical Stimulation in Wound Healing: Review of the Efficacy of Externally Applied Currents Resembling the Current of Injury. Eplasty. 2008;8:e28. Read article >

Zhao M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol.2009 Aug;20(6):674-82. Read article >

Liu X, Lee PY, Ho CM, Lui VC, Chen Y, Che CM, Tam PK, Wong KK. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing. ChemMedChem. 2010 Mar 1;5(3):468-75. Read article >

Messerli MA, Graham DM. Extracellular Electrical Fields Direct Wound Healing and Regeneration. Biol Bull. 2011, Aug;221(1):79-92. Read article >

Nuccitelli R, Nuccitelli P, Li C, Narsing S, Pariser DM, Lui K. The electric field near human skin wounds declines with age and provides a noninvasive indicator of wound healing. Wound Repair Regen. 2011 Sep-Oct;19(5). Read article >

Thakral G, LaFontaine J, Najafi B, Talal TK, Kim P, Lavery LA. Electrical stimulation to accelerate wound healing. Diabetic Foot & Ankle. 2013;4:10.3402/dfa.v4i0.22081. Read article >

Reid B, Zhao M. The Electrical Response to Injury: Molecular Mechanisms and Wound Healing. Advances in Wound Care. 2014;3(2):184-201. Read article >

Ud-Din S, Bayat A. Electrical Stimulation and Cutaneous Wound Healing: A Review of Clinical Evidence. Healthcare 2014, 2(4), 445-467. Read article >

Hunckler J, de Mel A. A current affair: electrotherapy in wound healing. J Multidiscip Healthc. 2017;10:179-194. Published 2017 Apr 20. doi:10.2147/JMDH.S127207. Read article >

Reid B, Song B, Zhao M. Electric currents in Xenopus tadpole tail regeneration. Dev Biol. 2009 Nov 1;335(1):198-207. doi: 10.1016/j.ydbio.2009.08.028. Read article >


Becker RO, Murray DG. A method for producing cellular dedifferentiation by means of very small electrical currents. Trans N Y Acad Sci. 1967 Mar;29(5):606-15. Read article > View or download PDF >

Harrington DB, Becker RO. Electrical stimulation of RNA and protein synthesis in the frog erythrocyte. Exp Cell Res. 1973 Jan;76(1):95-8. Read article >

Becker RO, Flick AB, Becker AJ. Iontopheretic system for stimulation of tissue healing and regeneration. US 5814094 A. Sep 29, 1998. Read article >

Becker RO. Effects of Electrically Generated Silver Ions on Human Cells and Wound Healing. Journal Electro- and Magnetobiology. Volume 19, 2000 – Issue 1, Pages 1-19. Read article >

Becker RO. Induced dedifferentiation: a possible alternative to embryonic stem cell transplants. NeuroRehabilitation. 2002;17(1):23-31. Read article >

Levin M. Bioelectric mechanisms in regeneration: unique aspects and future perspectives. Seminars in cell & developmental biology. 2009;20(5):543-556. Read article >

Rouabhia M, Park H, Meng S, Derbali H, Zhang Z. Electrical stimulation promotes wound healing by enhancing dermal fibroblast activity and promoting myofibroblast transdifferentiation. PLoS One. 2013 Aug 19;8(8):e71660. Read article >


Sandvik EL, McLeod BR, Parker AE, Stewart PS. Direct electric current treatment under physiologic saline conditions kills staphylococcus epidermidis biofilms via electrolytic generation of hypochlorous acid. PLoS One. 2013;8(2):e55118. doi: 10.1371/journal.pone.0055118. Epub 2013 Feb 4. Read article > Open access article >

Ruiz-Ruigomez M, Badiola J, Schmidt-Malan SM, Greenwood-Quaintance K, Karau MJ, Brinkman CL, Mandrekar JN, Patel R. Direct electrical current reduces bacterial and yeast biofilm formation. International Journal of Bacteriology. Volume 2016 (2016). Read article >

Liu WK, Brown MR, Elliott TS. Mechanisms of the bactericidal activity of low amperage electric current (DC). J Antimicrob Chemother. 1997 Jun;39(6):687-95. Read article > View or download PDF >

Brinkman CL, Schmidt-Malan SM, Karau MJ, Greenwood-Quaintance K, Hassett DJ, Mandrekar JN, Patel R. Exposure of Bacterial Biofilms to Electrical Current Leads to Cell Death Mediated in Part by Reactive Oxygen Species. PLoS One. 2016 Dec 19;11(12):e0168595. doi: 10.1371/journal.pone.0168595. eCollection 2016. Read article >

Schmidt-Malan SM, Karau MJ, Cede J, Greenwood-Quaintance KE, Brinkman CL, Mandrekar JN, Patel R. Antibiofilm activity of low-amperage continuous and intermittent direct electrical current. Antimicrob Agents Chemother. 2015 Aug;59(8):4610-5. Read article >

Schmidt-Malan SM, Brinkman CL, Greenwood-Quaintance KE, Karau MJ, Mandrekar JN, Patel R. Activity of Electrical Current in Experimental Propionibacterium acnes Foreign-Body Osteomyelitis. Antimicrobial Agents and Chemotherapy. 2017;61(2):e01863-16. Read article >

Del Pozo JL, Rouse MS, Euba G, Kang CI, Mandrekar JN, Steckelberg JM, Patel R. The electricidal effect is active in an experimental model of Staphylococcus epidermidis chronic foreign body osteomyelitis. Antimicrob Agents Chemother. 2009 Oct;53(10):4064-8. doi: 10.1128/AAC.00432-09. Epub 2009 Aug 3. Read article > View or download PDF >

Rowley BA, McKenna JM, Chase GR, Wolcott LE. The influence of electrical currents on infecting microorganism in wounds. Ann N Y Acad Sci. 1974;238:543-51. Read article >

Kalinowski DP, Edsberg LE, Hewson RA, Johnson RH, Brogan MS. Low-voltage direct current as a fungicidal agent for treating onychomycosis. J Am Podiatr Med Assoc. 2004 Nov-Dec;94(6):565-72. Read article >

Thibodeau EA, Handelman SL, Marquis RE. Inhibition and killing of oral bacteria by silver ions generated with low intensity direct current. J Dent Res. 1978 Sep-Oct;57(9-10):922-6. Read article >

Hall RE, Bender G, Marquis RE. In vitro effects of low intensity direct current generated silver on eukaryotic cells. J Oral Maxillofac Surg. 1988 Feb;46(2):128-33. Read article >

Tronstad L, Trope M, Hammond BF. Effect of electric current and silver electrodes on oral bacteria. Endod Dent Traumatol. 1985 Jun;1(3):112-5. Read article >

Hoare JI, Rajnicek AM, McCaig CD, Barker RN, Wilson HM. Electric fields are novel determinants of human macrophage functions. J Leukoc Biol. 2016 Jun;99(6):1141-51. doi: 10.1189/jlb.3A0815-390R. Read article >

Merriman HL, Hegyi CA, Albright-Overton CR, Carlos J Jr, Putnam RW, Mulcare JA. A comparison of four electrical stimulation types on Staphylococcus aureus growth in vitro. J Rehabil Res Dev. 2004; 41(2):139–146. Read article >



Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ. Silver Enhances Antibiotic Activity Against Gram-negative Bacteria. Science translational medicine. 2013;5(190):190ra81. Read article >

Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M. Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl Microbiol Biotechnol. 2014 Mar;98(5):1951-61. Epub 2014 Jan 10. Read article >

Lara HH, Ayala-Núñez NV, Turrent L-D-CI, Padilla CR. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology. April 2010, Volume 26, Issue 4, pp 615–621. Read article >

Rai MK, Deshmukh SD, Ingle AP, Gade AK. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. Journal of Applied Microbiology, 112: 841–852, 2012. Read article >

Chu CS, McManus AT, Pruitt BA Jr, Mason AD Jr, Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008 Apr;74(7):2171-8. Read article >

Thapa R, Bhagat C, Shrestha P, Awal S, Dudhagara P. Enzyme-mediated formulation of stable elliptical silver nanoparticles tested against clinical pathogens and MDR bacteria and development of antimicrobial surgical thread. Annals of Clinical Microbiology and Antimicrobials. 2017;16:39. Read article >

Lkhagvajav N, Yasa I,Celik E, Koizhaiganova M, Sari O. Antimicrobial activity of colloidal silver nanoparticles prepared by sol-gel method. Digest Journal of Nanomaterials and Biostructures Vol. 6, No 1, January-March 2011, p. 149-154. Read article > View or download PDF >

Gupta LK, Jindal R, Beri HK, Chhibber S. Virulence of silver-resistant mutant of Klebsiella pneumoniae in burn wound model. Folia Microbiol (Praha). 1992;37(4):245-8. Read article >

Kalan LR, Pepin DM, Ul-Haq I, Miller SB, Hay ME, Precht RJ. Targeting biofilms of multidrug-resistant bacteria with silver oxynitrate. Int J Antimicrob Agents. 2017 Jun;49(6):719-726. Read article >

Panáček A, Smékalová M, Večeřová R, Bogdanová K, Röderová M, Kolář M, Kilianová M, Hradilová Š, Froning JP, Havrdová M, Prucek R, Zbořil R, Kvítek L. Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids Surf B Biointerfaces. 2016 Jun 1;142:392-9. Read article >

Cavassin ED, de Figueiredo LF, Otoch JP, Seckler MM, de Oliveira RA, Franco FF, Marangoni VS, Zucolotto V, Levin AS, Costa SF. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotechnology. 2015 Oct 5;13:64. Read article >

Yuan YG, Peng QL, Gurunathan S. Effects of Silver Nanoparticles on Multiple Drug-Resistant Strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-Infected Goats: An Alternative Approach for Antimicrobial Therapy. Int J Mol Sci. 2017 Mar 6;18(3). Read article >

Zou L, Lu J, Wang J, Ren X, Zhang L, Gao Y, Rottenberg ME, Holmgren A. Synergistic antibacterial effect of silver and ebselen against multidrug-resistant Gram-negative bacterial infections. EMBO Mol Med. 2017 Jun 12. Read article >

Percival SL, Thomas J, Linton S, Okel T, Corum L, Slone W. The antimicrobial efficacy of silver on antibiotic-resistant bacteria isolated from burn wounds. Int Wound J. 2012 Oct;9(5):488-93. Read article >


Woessner J. Blocking Out the Pain: Electric nerve block treatments for sciatic neuritis. Practical Pain Management. March/April 2002, Volume 2, Issue #2. Read article >

Liou JT, Liu FC, Hsin ST, Yang CY, Lui PW. Inhibition of the cyclic adenosine monophosphate pathway attenuates neuropathic pain and reduces phosphorylation of cyclic adenosine monophosphate response element-binding in the spinal cord after partial sciatic nerve ligation in rats. Anesth Analg. 2007 Dec;105(6):1830-7. Read article >

Wang YY, Wu SX, Zhou L, Huang J, Wang W, Liu XY, Li YQ. Dose-related antiallodynic effects of cyclic AMP response element-binding protein-antisense oligonucleotide in the spared nerve injury model of neuropathic pain. Neuroscience. 2006;139(3):1083-93. Epub 2006 Mar 3. Read article >

Ma W, Quirion R. Increased phosphorylation of cyclic AMP response element-binding protein (CREB) in the superficial dorsal horn neurons following partial sciatic nerve ligation. Pain. 2001 Sep;93(3):295-301. Read article >

Hurlé MA, Goirigolzarri I, Valdizán EM. Involvement of the cyclic AMP system in the switch from tolerance into supersensitivity to the antinociceptive effect of the opioid sufentanil. Br J Pharmacol. 2000 May;130(1):174-80. Read article >

Gu X, Bo J, Zhang W, Sun X, Zhang J, Yang Y, Ma Z. Intrathecal administration of cyclic AMP response element-binding protein-antisense oligonucleotide attenuates neuropathic pain after peripheral nerve injury and decreases the expression of N-methyl-D-aspartic receptors in mice. Oncol Rep. 2013 Jul;30(1):391-8. Epub 2013 Apr 30. 2005 Jun 29;3:6. Read article >

Shao X-M, Sun J, Jiang Y-L, Liu B-Y, Shen Z, Fang F, Du J-Y, Wu Y-Y, Wang J-L, Fang J-Q. Inhibition of the cAMP/PKA/CREB Pathway Contributes to the Analgesic Effects of Electroacupuncture in the Anterior Cingulate Cortex in a Rat Pain Memory Model. Neural Plast. 2016; 2016: 5320641. Read article >

Brust TF, Alongkronrusmee D, Soto-Velasquez M, Baldwin TA, Ye Z, Dai M, Dessauer CW, Van Rijn RM, Watts VJ. Identification of a selective small-molecule inhibitor of type 1 adenylyl cyclase activity with analgesic properties. Sci Signal. 2017 Feb 21;10(467). Read article >

Fitzgerald EM, Okuse K, Wood JN, Dolphin AC, Moss SJ. cAMP-dependent phosphorylation of the tetrodotoxin-resistant voltage-dependent sodium channel SNS. J Physiol. 1999 Apr 15;516 ( Pt 2):433-46. Read article >

Liu L, Yang T, Bruno MJ, Andersen OS, Simon SA. Voltage-gated ion channels in nociceptors: modulation by cGMP. J Neurophysiol. 2004 Oct;92(4):2323-32. Epub 2004 Jun 2. Read article >

Sluka KA. Activation of the cAMP transduction cascade contributes to the mechanical hyperalgesia and allodynia induced by intradermal injection of capsaicin. Br J Pharmacol. 1997 Nov;122(6):1165-73. Read article >

Lee LY, Kwong K, Lin YS, Gu Q. Hypersensitivity of bronchopulmonary C-fibers induced by airway mucosal inflammation: cellular mechanisms. Pulm Pharmacol Ther. 2002;15(3):199-204. Read article >

Gu Q, Ruan T, Hong J-L, Burki N, Lee L-Y. Hypersensitivity of pulmonary C fibers induced by adenosine in anesthetized rats. J Appl Physiol, 01 Sep 2003. Read article >

Middlekauff HR, Doering A, Weiss JN. Circulation. Adenosine enhances neuroexcitability by inhibiting a slow postspike after hyperpolarization in rabbit vagal afferent neurons. 2001 Mar 6;103(9):1325-9. Read article >


Li M, Wang X, Meintzer MK, Laessig T, Birnbaum MJ, Heidenreich KA. Cyclic AMP promotes neuronal survival by phosphorylation of glycogen synthase kinase 3beta. Mol Cell Biol. 2000 Dec;20(24):9356-63. Read article >

Cai D, Qiu J, Cao Z, McAtee M, Bregman BS, Filbin MT. Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. J Neurosci. 2001 Jul 1;21(13):4731-9. Read article >

Lau BY, Fogerson SM, Walsh RB, Morgan JR. Cyclic AMP promotes axon regeneration, lesion repair and neuronal survival in lampreys after spinal cord injury. Exp Neurol. 2013 Dec;250:31-42. Epub 2013 Sep 13. Read article >

Knott EP, Assi M, Pearse DD. Cyclic AMP Signaling: A Molecular Determinant of Peripheral Nerve Regeneration. BioMed Research International. Volume 2014 (2014). Read article >

Dugan LL, Kim JS, Zhang Y, Bart RD, Sun Y, Holtzman DM, Gutmann DH. Differential effects of cAMP in neurons and astrocytes. Role of B-raf. J Biol Chem. 1999 Sep 3;274(36):25842-8. Read article >

Ghosh-Roy A, Wu Z, Goncharov A, Jin Y, Chisholm AD. Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase. J Neurosci. 2010 Mar 3;30(9):3175-83. doi: 10.1523/JNEUROSCI.5464-09.2010. Read article >

Hannila SS, Filbin MT. The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Exp Neurol. 2008 Feb;209(2):321-32. Epub 2007 Aug 27. Read article >

Qiu J, Cai D, Dai H, McAtee M, Hoffman PN, Bregman BS, Filbin MT. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron. 2002 Jun 13;34(6):895-903. Read article >


Abu-Taha IH, Heijman J, Hippe HJ, Wolf NM, El-Armouche A, Nikolaev VO, Schäfer M, Würtz CM, Neef S, Voigt N, Baczkó I, Varró A, Müller M, Meder B, Katus HA, Spiger K, Vettel C, Lehmann LH, Backs J, Skolnik EY, Lutz S, Dobrev D, Wieland T. Nucleoside Diphosphate Kinase-C Suppresses cAMP Formation in Human Heart Failure. Circulation. 2017 Feb 28;135(9):881-897 Read article >

Bubb KJ, Trinder SL, Baliga RS, Patel J, Clapp LH, MacAllister RJ, Hobbs AJ. Inhibition of phosphodiesterase 2 augments cGMP and cAMP signaling to ameliorate pulmonary hypertension. Circulation. 2014 Aug 5;130(6):496-507. Read article >

Tseng SY, Chao TH, Li YH, Liu PY, Lee CH, Cho CL, Wu HL, Chen JH. Cilostazol improves high glucose-induced impaired angiogenesis in human endothelial progenitor cells and vascular endothelial cells as well as enhances vasculoangiogenesis in hyperglycemic mice mediated by the adenosine monophosphate-activated protein kinase pathway. J Vasc Surg. 2016 Apr;63(4):1051-62.e3. Read article >

Stott J, Greenwood I. Complex role of Kv7 channels in cGMP and cAMP-mediated relaxations. Channels. 2015;9(3):117-118. Read article >

García-Morales V, Cuíñas A, Elíes J, Campos-Toimil M. PKA and Epac activation mediates cAMP-induced vasorelaxation by increasing endothelial NO production. Vascul Pharmacol. 2014 Mar;60(3):95-101. Read article >


Erdogan S, Aslantas O, Celik S, Atik E. The effects of increased cAMP content on inflammation, oxidative stress and PDE4 transcripts during Brucella melitensis infection. Res Vet Sci. 2008 Feb;84(1):18-25. Epub 2007 Mar 29. Read article >

Yuan X, Arkonac DE, Chao P-HG, Gordana VN. Electrical stimulation enhances cell migration and integrative repair in the meniscus. Nature, Scientific Reports 4, Article number: 3674 (2014). Read article >

Hoyle GW. Mitigation of chlorine lung injury by increasing cyclic AMP levels. Proc Am Thorac Soc. 2010 Jul;7(4):284-9. Read article >

Ji H, Shen XD, Zhang Y, Gao F, Huang CY, Chang WW, Lee C, Ke B, Busuttil RW, Kupiec-Weglinski JW. Activation of cyclic adenosine monophosphate-dependent protein kinase a signaling prevents liver ischemia/reperfusion injury in mice. Liver Transpl. 2012 Jun;18(6):659-70. Read article >

Sakaguchi T, Asai T, Belov D. Okada M, Pinsky DJ, Schmidt AM, Naka Y. Influence of ischemic injury on vein graft remodeling: Role of cyclic adenosine monophosphate second messenger pathway in enhanced vein graft preservation. J Thorac Cardiovasc Surg. Volume 129, Issue 1, January 2005, Pages 129-137. Read article >


Stewart R, Flechner L, Montminy M, Berdeaux R. CREB is activated by muscle injury and promotes muscle regeneration. PLoS One. 2011;6(9):e24714. Epub 2011 Sep 13. Read article >

Kerrick WG, Hoar PE. Inhibition of smooth muscle tension by cyclic AMP-dependent protein kinase. Nature. 1981 Jul 16;292(5820):253-5. Read article >

Berdeaux R, Stewart R. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration. Am J Physiol Endocrinol Metab. 2012 Jul 1;303(1):E1-17. Epub 2012 Feb 21. Read article >


Fajardo AM, Piazza GA, Tinsley HN. The Role of Cyclic Nucleotide Signaling Pathways in Cancer: Targets for Prevention and Treatment. Cancers (Basel). 2014 Feb 26;6(1):436-58. Read article >

Gottesman MM, Fleischmann RD. The role of cAMP in regulating tumour cell growth. Cancer Surv. 1986;5(2):291-308. Read article >

Marko D, Romanakis K, Zankl H, Fürstenberger G, Steinbauer B, Eisenbrand G. Induction of apoptosis by an inhibitor of cAMP-specific PDE in malignant murine carcinoma cells overexpressing PDE activity in comparison to their nonmalignant counterparts. Cell Biochem Biophys. 1998;28(2-3):75-101. Read article >

Löffler I, Grün M, Böhmer FD, Rubio I. Role of cAMP in the promotion of colorectal cancer cell growth by prostaglandin E2. BMC Cancer. 2008 Dec 19;8:380. Read article >

Sheffield LG, Welsch CW. Cholera-toxin-enhanced growth of human breast cancer cell lines in vitro and in vivo: interaction with estrogen. Int J Cancer. 1985 Oct 15;36(4):479-83. Read article >

Lerner A, Kim DH, Lee R. The cAMP signaling pathway as a therapeutic target in lymphoid malignancies. Leuk Lymphoma. 2000 Mar;37(1-2):39-51. Read article >

Murray F, Insel PA. Targeting cAMP in chronic lymphocytic leukemia: a pathway-dependent approach for the treatment of leukemia and lymphoma. Expert Opin Ther Targets. 2013 Aug;17(8):937-49. Epub 2013 May 7. Read article >

Insel PA, Wilderman A, Zhang L, Keshwani MM, Zambon AC. Cyclic AMP/PKA-promoted apoptosis: insights from studies of S49 lymphoma cells. Horm Metab Res. 2014 Nov;46(12):854-62. Epub 2014 Jul 16. Read article >


Kim MO, Ryu JM, Suh HN, Park SH, Oh YM, Lee SH, Han HJ. cAMP Promotes Cell Migration Through Cell Junctional Complex Dynamics and Actin Cytoskeleton Remodeling: Implications in Skin Wound Healing. Stem Cells Dev. 2015 Nov 1;24(21):2513-24. Read article >

Kim WK, Song SY, Oh WK, Kaewsuwan S, Tran TL, Kim WS, Sung JH. Wound-healing effect of ginsenoside Rd from leaves of Panax ginseng via cyclic AMP-dependent protein kinase pathway. Eur J Pharmacol. 2013 Feb 28;702(1-3):285-93. Read article >

Pullar CE, Isseroff RR. Cyclic AMP mediates keratinocyte directional migration in an electric field. J Cell Sci. 2005 May 1;118(Pt 9):2023-34. Read article >

Zhu K, Sun Y, Miu A, Yen M, Liu B, Zeng Q, Mogilner A, Zhao M. cAMP and cGMP Play an Essential Role in Galvanotaxis of Cell Fragments. J Cell Physiol. 2016 Jun;231(6):1291-300. Read article >

Shibata H, Shioya N, Kuroyanagi Y. Development of new wound dressing composed of spongy collagen sheet containing dibutyryl cyclic AMP. J Biomater Sci Polym Ed. 1997;8(8):601-21. Read article >

Aghajanian J, Hand A, Genutis S, Tatch W, Mednieks M. Expression of Cyclic AMP-Receptor (cARP) Proteins by Fibroblasts in Culture: Effects of Mechanical Disruption. Microsc Microanal 9(Suppl 2), 2003, pp. 1386-1387. Read article >

Rundfeldt C, Steckel H, Sörensen T, Wlaźcorresponding P. The stable cyclic adenosine monophosphate analogue, dibutyryl cyclo-adenosine monophosphate (bucladesine), is active in a model of acute skin inflammation. Arch Dermatol Res. 2012 May; 304(4): 313–317. Read article >

Balakrishnan B, Mohanty M, Fernandez AC, Mohanan PV, Jayakrishnan A. Evaluation of the effect of incorporation of dibutyryl cyclic adenosine monophosphate in an in situ-forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials. 2006 Mar;27(8):1355-61. Read article >

Lu D, Aroonsakool N, Yokoyama U, Patel HH, Insel PA. Increase in cellular cyclic AMP concentrations reverses the profibrogenic phenotype of cardiac myofibroblasts: a novel therapeutic approach for cardiac fibrosis. Mol Pharmacol. 2013 Dec;84(6):787-93. Read article >

Wong KH, Truslow JG, Tien J. The role of cyclic AMP in normalizing the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials. 2010 Jun;31(17):4706-14. Read article >

Buscà R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res 2000;13:60-9. Pigment Cell Res. 2000 Apr;13(2):60-9. Read article >


Contact us today

Send us your inquiry and we’ll get back to you within 1 business day.

Contact Info